Question		on	Answer	Marks	Guidance
1	(a)		Proton/H ⁺ donor AND Partially dissociates/ionises ✓	1	
	(b)		FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 13.7(0), award 2 marks $[H^+] = \frac{1.00 \times 10^{-14}}{0.5(00)} \text{ OR } 2(.00) \times 10^{-14} \text{ (mol dm}^{-3}) \checkmark$ $pH = -\log 2(.00) \times 10^{-14} = 13.7(0) \checkmark$	2	For pOH method:, ALLOW pOH = $-\log[OH^-] = 0.3(0) \checkmark$ (calculator 0.301029995) ALLOW pH = 14 - 0.3 = 13.7 \checkmark ALLOW 13.7 up to calculator value of 13.69897 correctly rounded.
					ALLOW ECF from incorrect $[H^+(aq)]$ provided that pH >7
	(c)	(i)	$(K_{a} =) \frac{[H^{+}] [C_{2}H_{5}COO^{-}]}{[C_{2}H_{5}COOH]} \checkmark$	1	IGNORE $\frac{[H^+]^2}{[C_2H_5COOH]} \text{ OR } \frac{[H^+][A^-]}{[HA]}$ ALLOW [H ₃ O ⁺] for [H ⁺]
					IGNORE state symbols

Question	Answer	Marks	Guidance
Question (c) (ii)	AnswerFIRST, CHECK THE ANSWER ON ANSWER LINEIF answer = 2.9(0), award 3 marks $[C_{2}H_{5}COOH] = 0.12(0) \text{ mol } dm^{-3} \checkmark$ $[H^{+}] = \sqrt{K_{a} \times [C_{2}H_{5}COOH]} = \sqrt{1.35 \times 10^{-5} \times 0.12(0)}$ OR 1.27 × 10 ⁻³ (mol dm ⁻³) ✓pH = -log 1.27 × 10 ⁻³ = 2.9(0) ✓NOTE: The final two marks are ONLY available from attempted	Marks 3	GuidanceALLOW HA for C_2H_5COOH and A ⁻ for $C_2H_5COO^-$ ALLOW ECF from incorrectly calculated [C_2H_5COOH]ALLOW 1.27 × 10 ⁻³ to calculator value of 1.272792206 × 10 ⁻³ correctly roundedALLOW 2.9(0) × 10 ⁻³ to calculator value of 2.895242493 correctly rounded
	use of A _a AND [C ₂ H ₅ COOH]		ALLOW use of quadratic equation which gives same answer of 2.90 from 0.120 mol dm ⁻³ COMMON ERRORS (MUST be to AT LEAST 2 DP unless 2 nd decimal place is 0) pH = 2.59 2 marks $-\log\sqrt{(1.35 \times 10^{-5} \times 0.480)}$ Original conc pH = 5.79 2 marks $-\log(1.35 \times 10^{-5} \times 0.120)$ No $$ pH = 5.19 1 mark $-\log((1.35 \times 10^{-5} \times 0.480))$ Original conc, no $$ pH = 4.87 0 marks $-\log(1.35 \times 10^{-5}) = 4.87$ $-\log K_a$

Ques	tion	Answer	Marks	Guidance
(d) (i)	$2C_2H_5COOH + Na_2CO_3 \rightarrow 2C_2H_5COONa + CO_2 + H_2O \checkmark$	1	IGNORE state symbols and use of equilibrium sign FOR $CO_2 + H_2O$ ALLOW H_2CO_3 ALLOW $C_2H_5COO^-Na^+$ OR $C_2H_5COO^- + Na^+$ BUT BOTH + and – charges must be shown ALLOW NaC_2H_5COO
(d) (ii)	$H^+ + OH^- \rightarrow H_2O \checkmark$	1	ALLOW $C_2H_5COOH + OH^- \rightarrow C_2H_5COO^- + H_2O$ IGNORE state symbols
(e) (i)	pH = −log 1.35 × 10 ⁻⁵ = 4.87 ✓	1	ONLY correct answerDO NOT ALLOW 4.9(Question asks for 2 DP)
(e) (ii)	Added ammonia C_2H_5COOH removes added NH ₃ /alkali/baseOR $C_2H_5COOH + NH_3 / OH^- \rightarrow$ OR NH_3/alkali reacts with/accepts H ⁺ OR H ⁺ + NH ₃ \rightarrow OR H ⁺ + OH ⁻ $\rightarrow \checkmark$		ALLOW use of HA/weak acid/acid for C ₂ H ₅ COOH; ALLOW use of NH ₄ OH for NH ₃
		Equiibrium $\rightarrow C_2H_5COO^- \mathbf{OR}$ Equilibrium \rightarrow right \checkmark	2	ALLOW A ⁻ for $C_2H_5COO^-$ ASSUME that equilibrium applies to that supplied in the question, i.e. IGNORE any other equilibria

Question	Answer	Marks	Guidance
(e) (iii)	CHECK WORKING CAREFULLY AS CORRECT NUMERICAL ANSWER IS POSSIBLE FROM WRONG VALUES		FULL ANNOTATIONS MUST BE USED
	ALLOW HA and A ⁻ throughout Amount of Mg (1 mark) $p(Mq) = \frac{6.075}{2}$ 0.25(0) mal χ		For <i>n</i> (Mg), 1 mark ALLOW ECF for ALL marks below from incorrect <i>n</i> (Mg)
	Moles/concentrations(2 marks)		 ECF ONLY available from concentrations that have subtracted 0.50 OR 0.25 from 1 for [C₂H₅COOH] added 0.50 OR 0.25 to 1 for [C₂H₅COO⁻]
	$n(C_2H_5COOH) = 1.00 - (2 \times 0.25) = 0.50 \text{ (mol)} \checkmark$		For moles/concentration 1 mark (1 mark lost) 1. $_n$ (C ₂ H ₅ COOH) = 0.75 AND n (C ₂ H ₅ COO ⁻) = 1.25
	$(C_2H_5COO^-) = 1.00 + (2 \times 0.25) = 1.50 \text{ (mol)} \checkmark$		2. $n(C_2H_5COOH) = 0.50$ AND $n(C_2H_5COO^-) = 1.25$ 3. $n(C_2H_5COOH) = 0.75$ AND $n(C_2H_5COO^-) = 1.50$
	[H ⁺] and pH (1 mark) [H ⁺] = $1.35 \times 10^{-5} \times \frac{0.50}{1.50}$ OR 4.5×10^{-6} (mol dm ⁻³)	4	ALLOW ECF ONLY for the following giving 1 additional mark and a total of 3 marks 1. $[H^{+}] = 1.35 \times 10^{-5} \times \frac{0.75}{1.25}$ pH = -log 8.1 × 10 ⁻⁶ = 5.09
	NOTE: IF there is no prior working,		2. [H ⁺] = $1.35 \times 10^{-5} \times \frac{0.50}{1.25}$ pH = $-\log 5.4 \times 10^{-6}$ = 5.27
	ALLOW 4 MARKS for $[H^+] = 1.35 \times 10^{-5} \times \frac{0.50}{1.50}$ AND pH = 5.35		3. [H ⁺] = $1.35 \times 10^{-5} \times \frac{0.75}{1.50}$ pH = $-\log 6.75 \times 10^{-6} = $ 5.17
	IF the ONLY response is pH = 5.35, award 1 mark ONLYAward a maximum of 1 mark (for $n(Mg) = 0.25$ mol) for: 		<u> </u>
	ALLOW alternative approach based on Henderson–Hasselbalch ec $pH = pK_a + \log \frac{1.5}{0.5}$ OR $pK_a - \log \frac{0.5}{1.5}$ $pH = 4$	uation for 87 + 0.48	final 1 mark = 5.35 \checkmark ALLOW $_{-\log} K_a$ for pK_a
	Total	16	

(Question		Answer	Marks	Guidance
2	(a)		CH ₃ COOH + H ₂ O = H ₃ O ⁺ + CH ₃ COO ⁻ ✓ Acid 1 Base 2 Acid 2 Base 1 ✓	2	IGNORE state symbols (even if incorrect) ALLOW 1 AND 2 labels the other way around. ALLOW 'just acid' and 'base' labels if linked by lines so that it is clear what the acid-base pairs are ALLOW A and B for 'acid' and 'base' IF proton transfer is wrong way around ALLOW 2nd mark for idea of acid-base pairs, <i>i.e.</i> CH ₃ COOH + H ₂ O \Rightarrow CH ₃ COOH ₂ ⁺ + OH ⁻ × Base 2 Acid 1 Acid 2 Base 1 \checkmark NOTE For the 2nd marking point (acid-base pairs), this is the ONLY acceptable ECF <i>i.e., NO ECF from impossible chemistry</i>
	(b)	(i)	Water dissociates/ionises OR $H_2O \Rightarrow H^+ + OH^-$ OR $2H_2O \Rightarrow H_3O^+ + OH^- \checkmark$	1	ALLOW $K_w = [H^+] [OH^-]$ OR $[H^+] [OH^-] = 10^{-14} (mol^2 dm^{-6})$ IGNORE breaking for dissociation IGNORE water contains H^+ and OH^- IGNORE $H_2O \rightarrow H^+ + OH^-$ <i>i.e. no equilibrium sign</i> IGNORE $2H_2O \rightarrow H_3O^+ + OH^-$ <i>i.e. no equilibrium sign</i>

 (b)	(ii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 1.15×10^{-11} , award 2 marks		IF there is an alternative answer, check to see if there is any ECF credit possible using working below.
		$[H^{+}] = 10^{-3.06} = 8.71 \times 10^{-4} \pmod{\text{dm}^{-3}} \checkmark$ $[OH^{-}] = \frac{1.00 \times 10^{-14}}{8.71 \times 10^{-4}} = 1.15 \times 10^{-11} \pmod{\text{dm}^{-3}} \checkmark$ ALLOW answer to two or more significant figures 2SF: 1.1×10^{-11} ; 4SF: 1.148×10^{-11} ; calculator $1.148153621 \times 10^{-11}$	2	ALLOW 2 SF: 8.7×10^{-4} up to calculator value of 8.7096359 × 10^{-4} correctly rounded ALLOW alternative approach using pOH: pOH = $14 - 3.06 = 10.94$ \checkmark [OH ⁻] = $10^{-10.94}$ = 1.15×10^{-11} (mol dm ⁻³) \checkmark
(c)	(i)	2CH ₃ COOH + CaCO ₃ → (CH ₃ COO) ₂ Ca + CO ₂ + H ₂ O \checkmark	1	IGNORE state symbols ALLOW \Rightarrow provided that reactants on LHS For CO ₂ + H ₂ O, ALLOW H ₂ CO ₃ ALLOW Ca(CH ₃ COO) ₂ ALLOW (CH ₃ COO ⁻) ₂ Ca ²⁺ BUT DO NOT ALLOW if either charge is missing or incorrect

 (0)	(::)			ALLOW nomeous otherwsis said for CLL COOL
(C)	(11)			
		solution contains CH ₃ COOH AND CH ₃ COO [−] ✓	1	ethanoate for CH₃COO [−]
				ALLOW calcium ethanoate OR (CH ₃ COO) ₂ Ca for CH ₃ COO ⁻
				IGNORE 'acid, salt, conjugate base; responses must identify the acid and conjugate base as ethanoic acid and ethanoate
				IGNORE ethanoic acid is in excess (<i>in question</i>) BUT DO ALLOW some ethanoic acid is left over/present/some ethanoic acid has reacted
				IGNORE equilibrium: $CH_3COOH \Rightarrow H^+ + CH_3COO^-$ Dissociation of ethanoic acid only

(c)) (iii)	Quality of written communication, QWC		FULL ANNOTATIONS MUST BE USED
		system allows the buffer solution to control the pH on addition of H^+ and OH^- (see below)		Note: If there is no equilibrium equation then the two subsequent equilibrium marks are not available: max 2
		$CH_3COOH \Rightarrow H^+ + CH_3COO^- \checkmark$		DO NOT ALLOW HA \Rightarrow H ⁺ + A ⁻ DO NOT ALLOW more than one equilibrium equation.
		CH-COOH reacts with added alkali		ALLOW response in terms of H^+ , A^- and HA
		OR CH ₃ COOH + OH ⁻ \rightarrow OR added alkali reacts with H ⁺ OR H ⁺ + OH ⁻ $\rightarrow \checkmark$		IF more than one equilibrium shown, it must be clear which one is being referred to by labeling the equilibria.
		Equilibrium \rightarrow right OR Equilibrium \rightarrow CH ₃ COO ⁻ \checkmark (QWC)		ALLOW weak acid reacts with added alkali DO NOT ALLOW acid reacts with added alkali
		CH_3COO^- reacts with added acid \checkmark		
		Equilibrium \rightarrow left OR Equilibrium \rightarrow CH ₃ COOH \checkmark (QWC)	5	ALLOW conjugate base reacts with added acid DO NOT ALLOW salt/base reacts with added acid

(d)			FULL ANNOTATIONS MUST BE USED
	FIRST, CHECK THE ANSWER ON ANSWER LINE		IF there is an alternative answer, check to see if there is any ECF credit possible.
	IF answer = 11.48 OR 11.5 (g), award 5 marks [H ⁺] = 10 ⁻⁵ (mol dm ⁻³) ✓		Incorrect use of $[H^+] = \sqrt{(CH_3COOH] \times K_a)}$ scores zero BUT IGNORE if an alternative successful method is present Incorrect use of K_w , 1 max for $[H^+] = 10^{-5}$ (mol dm ⁻³) BUT IGNORE if an alternative successful method is present
	$[CH_{3}COO^{-}] = \frac{1.75 \times 10^{-5}}{10^{-5}} \checkmark \times 0.200 = 0.350 \text{ mol dm}^{-3} \checkmark$ $n(CH_{3}COONa/CH_{3}COO^{-}) \text{ in } 400 \text{ cm}^{3}$ $= 0.350 \times \frac{400}{1000} = 0.14(0) \text{ (mol)} \checkmark$		ALLOW $n(CH_3COONa/CH_3COO^-)$ = $\frac{1.75 \times 10^{-5}}{10^{-5}}$ $\checkmark \times 0.08 = 0.14(0) \text{ (mol) } \checkmark \checkmark$ Note: There is no mark just for $n(CH_3COOH)$ in 400 cm ³ = $0.200 \times \frac{400}{1000} = 0.08 \text{ (mol)}$
	mass CH ₃ COONa = $0.140 \times 82.0 = 11.48$ OR 11.5 (g) \checkmark For ECF, <i>n</i> (CH ₃ COONa/CH ₃ COO ⁻) must have been calculated in step before	5	As alternative for the 4th and 5th marks, ALLOW : mass of CH ₃ COONa in 1 dm ³ = 0.350 × 82.0 = 28.7 g \checkmark mass of CH ₃ COONa in 400 cm ³ = 28.7 × $\frac{400}{1000}$ = 11.48 g \checkmark
			COMMON ECF 4.592 OR 4.6 g AWARD 4 marks use of 400/1000 twice

PhysicsAndMathsTutor.com

		ALLOW variants of Henderson-Hasselbalch equation. $pK_a = -log(1.75 \times 10^{-5}) = 4.757 \checkmark Calc: 4.75696$ $log \begin{bmatrix} CH_3COO^{-1} \\ [CH_3COOH] \end{bmatrix} = pH - pK_a = 5 - 4.757 = 0.243$ $\frac{[CH_3COO^{-1}]}{[CH_3COOH]} = 10^{0.243} = 1.75 \checkmark$ $[CH_3COO^{-1}] = 1.75 \times 0.200 = 0.350 \text{ mol dm}^{-3} \checkmark$ $n(CH_3COONa/CH_3COO^{-1}) \text{ in } 400 \text{ cm}^3$ $= 0.350 \times \frac{400}{1000} = 0.14(0) \text{ (mol)} \checkmark$ mass $CH_3COONa = 0.140 \times 82.0 = 11.48 \text{ OR } 11.5 \text{ (g)} \checkmark$
Total	17	

C	Question		er	Marks	Guidance
3	(a)			5	ANNOTATE WITH TICKS AND CROSSES, etc
			HC <i>l</i> is a strong acid AND HC <i>l</i> O is a weak acid \checkmark HC <i>l</i> : pH = -log 0.14 = 0.85 (2 DP required) \checkmark		ALLOW HC <i>l</i> completely dissociates AND HC <i>l</i> O partially dissociates ALLOW HC <i>l</i> \rightarrow H ⁺ + C <i>l</i> AND HC <i>l</i> O \rightleftharpoons H ⁺ + C <i>l</i> O ⁻
			HC/O: CHECK THE ANSWER ON ANSWER LINE		IGNORE HC <i>l</i> is a stronger acid than HC <i>l</i> O IGNORE HC <i>l</i> produces more H ⁺
			IF answer = 4.14, award all three calculation marks		IF there is an alternative answer, check to see if there is any ECF credit possible using working below
			$K_{\rm a} = 10^{-7.43} \text{OR} 3.7 \text{x} 10^{-8} (\text{mol dm}^{-3}) \checkmark$		
			$[H^+] = \sqrt{K_a \times [HCIO]} \text{ OR } \sqrt{K_a \times [HA]}$		ALLOW 2 SF to calculator value: $3.715352291 \times 10^{-8}$, correctly rounded
			OR $\sqrt{K} \times 0.14$ OR $\sqrt{3.7 \times 10^{-8} \times 0.14}$		IGNORE 'HC <i>l</i> ' if it is clear that it is a 'slip'
			pH = 4.14 (2 DP required) \checkmark		Always ALLOW calculator value irrespective of working as number may have been kept in calculator.
					Note : $pH = 4.14$ is obtained from all three values above
					From no square root, $pH = 8.28$. Worth K_a mark only

Question	er	Marks	Guidance
(b)	$2Al + 6CH_3COOH \longrightarrow 2(CH_3COO)_3Al + 3H_2 \checkmark$	2	IGNORE state symbols ALLOW correct multiples, e.g.: $Al + 3CH_3COOH \longrightarrow (CH_3COO)_3Al + 1.5H_2$ ALLOW any unambiguous formula for $(CH_3COO)_3Al$, <i>i.e.</i> $(CH_3CO_2)_3Al$, $Al(CH_3CO_2)_3$, $(CH_3COO^-)_3Al^{3+}$, etc. Note: IF charges are shown, they must be correct with both - and 3+ shown
	$2Al + 6H^{+} \longrightarrow 2Al^{3+} + 3H_2 \checkmark$		ALLOW multiples, e.g.: Al + $3H^+ \longrightarrow Al^{3+} + 1.5H_2$
(C)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 13.6(0), award 2 marks $[H^{+}] = \frac{K_{w}}{[OH^{-}]} \text{ OR } \frac{1.0 \times 10^{-14}}{[OH^{-}]} \text{ OR } \frac{1.0 \times 10^{-14}}{0.4(0)}$ OR 2.5 x 10 ⁻¹⁴ (mol dm ⁻³) \checkmark Correctly calculates pH = -log 2.5 x 10 ⁻¹⁴ = 13.6(0) \checkmark	2	ALLOW alternative approach using pOH: pOH = $0.4(0) \checkmark$ pH = $14 - 0.40 = 13.6(0) \checkmark$ ALLOW ECF from [H ⁺] derived using K_w and [OH ⁻] BUT DO NOT ALLOW an acid pH. ALLOW one or more decimal places

Question		er	Marks	Guidance
(0) (i)		7	ANNOTATE WITH TICKS AND CROSSES, etc
		A buffer solution minimises pH changes \checkmark on addition of small amounts of acid/H ⁺ or alkali/OH ⁻ /base \checkmark		ALLOW resists pH changes ALLOW buffer solutions maintains a nearly/virtually constant pH DO NOT ALLOW a response that implies that the pH is actually constant, e.g. does not change pH; maintains pH
		$HCOOH \Rightarrow H^{+} + HCOO^{-} \checkmark$		DO NOT ALLOW COOH OR CHOOH OR COOH
		Equilibrium sign essential		DO NOT ALLOW $HA \Rightarrow H^+ + A^-$
		For effect of acid and alkali, ALLOW wrong carboxylic acid (e.g. CH_3COOH) OR HA; ALLOW CHOOH for acid (effectively ECF) ALLOW COOH ⁻ for base ALLOW responses based on COOH \Rightarrow H ⁺ + COO ⁻ DO NOT ALLOW other incorrect formula, e.g. CH_3OOH		Quality of written communication, QWC 2 marks are for explaining how the equilibrium system allows he buffer solution to control the pH on addition of H ⁺ and OH [−]
		Added alkali HCOOH reacts with added alkali/base/OH [−] OR added alkali/OH [−] reacts with H ⁺ ✓		ALLOW HA OR weak acid reacts with added alkali
		QWC : Equilibrium shifts forming $HCOO^- \mathbf{OR} H^+$ OR (HCOOH) Equilibrium \rightarrow right \checkmark		DO NOT ALLOW this mark if there is no equilibrium system shown, e.g. HCOOH \Rightarrow H ⁺ + HCOO ⁻ is absent
		Added acid HCOO ^{$-$} reacts with added acid/H ⁺ \checkmark		ALLOW A ⁻ OR conjugate base reacts with added acid IGNORE salt reacts with added acid
		QWC : Equilibrium shifts forming HCOOH OR (HCOOH) Equilibrium \rightarrow left \checkmark		DO NOT ALLOW this mark if there is no equilibrium system shown, e.g. HCOOH \Rightarrow H ⁺ + HCOO ⁻ is absent

Question		er	Marks	Guidance
(d)	(ii)	HCOOH reacts with NaOH forming HCOO ⁻ /HCOONa OR HCOOH + NaOH \rightarrow HCOONa + H ₂ O \checkmark Equilibrium sign allowed (Some) HCOOH/(weak) acid remains OR HCOOH/(weak) acid is in excess \checkmark Calculation CHECK THE ANSWER	6	ANNOTATE WITH TICKS AND CROSSES, etc DO NOT ALLOW just 'methanoate/HCOO ⁻ forms' formulae or names of reactants also required ALLOW HCOOH + $OH^- \rightarrow HCOO^- + H_2O \checkmark$ IGNORE conjugate base/salt forms IGNORE HCOOH has been partially neutralised
		CHECK THE ANSWER IF allswel = 5.99, awald all four ca		
		n(HCOOH) OR [HCOOH] = 0.24(0) (mol / mol dm ⁻³) \checkmark $n(\text{HCOO}^{-}) \text{ OR [HCOO}^{-}] \text{ OR [HCOONa]}$ = 0.4(00) (mol / mol dm ⁻³) \checkmark		Note: There must be a clear statement that 0.24 and 0.4 apply to moles or concentrations of HCOOH and HCOO ⁻ . DO NOT ALLOW these values if unlabelled
		$[H^{+}] = \mathcal{K}_{a} \times \frac{[\text{HCOOH}]}{[\text{HCOO}^{-}]} \checkmark$		ALLOW HA/acid and A ⁻ /salt for HCOOH and HCOO ⁻
		pH = −log [H ⁺] = −log(1.70×10 ⁻⁴ × $\frac{0.24}{0.4}$) = 3.99 ✓		DO NOT ALLOW ECF for this mark: 3.99 is the ONLY correct answer
		OR use of Henderson–Hasselbalch equation:		ALLOW HA/acid and A /salt for HCOOH and HCOO
		$pH = pK_a + \log \frac{[HCOO^-]}{[HCOOH]}$		ALLOW pH = $pK_a - \log \frac{[HCOO^-]}{[HCOO^-]}$ OR pH = $-\log K_a - \log \frac{[HCOOH]}{[HCOOH]}$
		OR pH = $-\log K_a + \log \frac{[\Pi COO]}{[HCOOH]}$		[HCOO ⁻]
		= 3.77 + 0.22 = 3.99 ✓		ALLOW = 3.77 – (-0.22) = 3.99 DO NOT ALLOW ECF for this mark: 3.99 is the ONLY correct answer
		Total	22	

PhysicsAndMathsTutor.com

Question		on	Answer	Marks	Guidance
4	(a)	(i)	$(\mathcal{K}_{a} =) \frac{[H^{+}][CH_{3}(CH_{2})_{2}COO^{-}]}{[CH_{3}(CH_{2})_{2}COOH]} \checkmark$	1	ALLOW $CH_3CH_2CH_2COOH$ OR C_3H_7COOH in expression DO NOT ALLOW use of HA and A ⁻ in this part. DO NOT ALLOW: $\frac{[H^+][CH_3(CH_2)_2COO^-]}{[CH_3(CH_2)_2COOH]} = \frac{[H^+]^2}{[CH_3(CH_2)_2COOH]}$ CON
		(ii)	$pK_a = -logK_a = 4.82 ✓$	1	ALLOW 4.82 up to calculator value of 4.821023053 DO NOT ALLOW 4.8
		(iii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 2.71 award 3 marks $[H^+] = \sqrt{[K_a][CH_3(CH_2)_2COOH]} \text{ OR } \sqrt{1.51 \times 10^{-5} \times 0.250}$ \checkmark $[H^+] = 1.94 \times 10^{-3} \text{ (mol dm}^{-3}) \checkmark$ $pH = -\log[H^+] = 2.71 \checkmark$	3	IF alternative answer to more or fewer decimal places, check calculator value and working for 1st and 2nd marks ALLOW use of HA and A ⁻ in this part Calculator: 1.942935923 x 10 ⁻³ ALLOW use of calculated K_a value, either calculator value or rounded on script. pH must be to 2 decimal places ALLOW ECF from incorrectly calculated [H ⁺] and pH ONLY when values for both K_a AND [CH ₃ CH ₂ CH ₂ COOH] have been used, i.e. 1.5 x 10 ⁻⁵ AND 0.250. e.g.: pH = 5.42 2 marks $-\log(1.51 \times 10^{-5} \times 0.250)$ No $$ pH = 2.11 2 marks $-\log(\sqrt{\frac{1.51 \times 10^{-5}}{0.250}})$ pH = 4.22 1 mark $-\log(\frac{1.51 \times 10^{-5}}{0.250})$ No $$ DO NOT ALLOW just $-\log(1.51 \times 10^{-5}) = 4.82$ NO MARKS

Question		on	Answer	Marks	Guidance
	(b)	(i)	$Mg + 2H^{+} \longrightarrow Mg^{2+} + H_2 \checkmark$	1	IGNORE state symbols ALLOW Mg + 2 CH ₃ (CH ₂) ₂ COOH \longrightarrow 2CH ₃ (CH ₂) ₂ COO ⁻ + Mg ²⁺ + H ₂ DO NOT ALLOW on RHS: (CH ₃ (CH ₂) ₂ COO ⁻) ₂ Mg ²⁺ <i>lons must be shown separately</i>
		(ii)	$CO_3^{2-} + 2H^+ \longrightarrow H_2O + CO_2 \checkmark$	1	IGNORE state symbols ALLOW $CO_3^{2^-} + 2 CH_3(CH_2)_2COOH \longrightarrow$ $2 CH_3(CH_2)_2COO^- + H_2O + CO_2$ ALLOW as product H_2CO_3
	(c)	(i)	CH ₃ (CH ₂) ₂ COONa OR CH ₃ (CH ₂) ₂ COO [−] forms OR CH ₃ (CH ₂) ₂ COOH + OH [−] \rightarrow CH ₃ (CH ₂) ₂ COO [−] + H ₂ O \checkmark CH ₃ (CH ₂) ₂ COOH is in excess OR acid is in excess OR some acid remains \checkmark	2	ALLOW names throughout ALLOW 'sodium salt of butanoic acid' ALLOW $CH_3(CH_2)_2COOH + NaOH \rightarrow CH_3(CH_2)_2COONa + H_2O$ DO NOT ALLOW just 'forms a salt/conjugate base' i.e. identity of product is required

Question		Answer	Marks	Guidance
(c)	(ii)	Moles (2 marks) amount $CH_3(CH_2)_2COOH = 0.0100 \text{ (mol)} \checkmark$ amount $CH_3(CH_2)_2COO^- = 0.0025 \text{ (mol)} \checkmark$	2	ANNOTATIONS MUST BE USED ALLOW HA and A ⁻ throughout Mark by ECF throughout
		Concentration (1 mark) $[CH_3(CH_2)_2COOH] = 0.100 \text{ mol } dm^{-3}$ AND $[CH_3(CH_2)_2COO^{-}] = 0.025 \text{ mol } dm^{-3} \checkmark$	1	
		[H ⁺] and pH (2 marks) [H ⁺] = $1.51 \times 10^{-5} \times \frac{0.100}{0.025}$ = 6.04 x 10 ⁻⁵ (mol dm ⁻³) ✓ pH = -log 6.04 x 10 ⁻⁵ = 4.22 ✓ pH to 2 DP	2	ONLY award final 2 marks via a correct pH calculation via $K_a \times \frac{[CH_3(CH_2)_2COOH]}{[CH_3(CH_2)_2COO^-]}$ using data derived from that in the question (i.e. not just made up values)
		ALLOW alternative approach based on Henderson–Hase $pH = pK_a + \log \frac{0.025}{0.100}$ OR $pK_a - \log \frac{0.100}{0.025}$ \checkmark pH =	selbalch = 4.82 – (equation for final 2 marks $0.60 = 4.22 \checkmark \text{ALLOW} -\log K_a \text{ for } pK_a$
		TAKE CARE with awarding marks for pH = 4.22There is a mark for the concentration stage.If this has been omitted, the ratio for the last 2 markswill be 0.0100 and 0.0025.4 marks max.		Common errors pH = 4.12 use of initial concentrations: 0.250 and 0.050 given in question. Award last 3 marks for: 0.250/2 AND 0.050/2 = 0.125 AND 0.025 ✓
		pH = 5.42 As above for 4.22 but with acid/base ratio inverted. Award 4 OR 3 marks		1.51×10 ⁻⁵ × $\frac{0.125}{0.025}$ = 7.55 x 10 ⁵ (mol dm ⁻³) ✓ pH = -log[H ⁺] = 4.12 ✓ Award last 2 marks for:
		Award zero marks for: 4.12 from no working or random values pH value from K_a square root approach (weak acid pH) pH value from K_w /10 ⁻¹⁴ approach (strong base pH)		1.51×10 ⁻⁵ × $\frac{0.250}{0.050}$ = 7.55 x 10 ⁻⁵ (mol dm ⁻³) ✓ pH = -log[H ⁺] = 4.12 ✓ pH = 5.52 As above for 4.12 but with acid/base ratio inverted. Award 2 OR 1 marks as outlined for 4.12 above

Questic	n Answer	Marks	Guidance
(d)	HCOOH + CH ₃ (CH ₂) ₂ COOH \Rightarrow HCOO ⁻ + CH ₃ (CH ₂) ₂ COOH ₂ ⁺ \checkmark		State symbols NOT required ALLOW 1 and 2 labels the other way around. ALLOW 'just acid' and 'base' labels throughout if linked by lines so that it is clear what the acid-base pairs are
	base 1 acid 2 ✓ CARE: Both + and – charges are required for the products in the equilibrium DO NOT AWARD the 2nd mark from an equilibrium expression that omits either charge	2	For 1st mark, DO NOT ALLOW COOH ⁻ (i.e. H at end rather than start) but within 2nd mark ALLOW COOH ⁻ by ECF IF proton transfer is wrong way around then ALLOW 2nd mark for idea of acid–base pairs, i.e. HCOOH + CH ₃ (CH ₂) ₂ COOH \Rightarrow HCOOH ₂ ⁺ + CH ₃ (CH ₂) ₂ COO ⁻ × base 2 acid 1 acid 2 base 1 \checkmark For H ₂ COOH ⁺ shown with wrong proton transfer, DO NOT ALLOW an ECF mark for acid–base pairs
	Total	16	